Reaction-diffusion Front Speed Enhancement by Flows
نویسنده
چکیده
Abstract. We study flow-induced enhancement of the speed of pulsating traveling fronts for reaction-diffusion equations, and quenching of reaction by fluid flows. We prove, for periodic flows in two dimensions and any combustion-type reaction, that the front speed is proportional to the square root of the (homogenized) effective diffusivity of the flow. We show that this result does not hold in three and more dimensions. We also prove conjectures from [1, 3, 11] for cellular flows, concerning the rate of speed-up of fronts and the minimal flow amplitude necessary to quench solutions with initial data of a fixed (large) size.
منابع مشابه
Sharp Asymptotics for Kpp Pulsating Front Speed-up and Diffusion Enhancement by Flows
We study KPP pulsating front speed-up and effective diffusivity enhancement by general periodic incompressible flows. We prove the existence of and determine the limits c∗(A)/A and D(A)/A as A → ∞, where c∗(A) is the minimal front speed and D(A) the effective diffusivity.
متن کاملEnhancement of the Traveling Front Speeds in Reaction-Diffusion Equations with Advection
We establish rigorous lower bounds on the speed of traveling fronts and on the bulk burning rate in reaction-diffusion equation with passive advection. The non-linearity is assumed to be of either KPP or ignition type. We consider two main classes of flows. Percolating flows, which are characterized by the presence of long tubes of streamlines mixing hot and cold material, lead to strong speed-...
متن کاملFront speed enhancement in cellular flows.
The problem of front propagation in a stirred medium is addressed in the case of cellular flows in three different regimes: slow reaction, fast reaction and geometrical optics limit. It is well known that a consequence of stirring is the enhancement of front speed with respect to the nonstirred case. By means of numerical simulations and theoretical arguments we describe the behavior of front s...
متن کاملExistence of Kpp Type Fronts in Space-time Periodic Shear Flows and a Study of Minimal Speeds Based on Variational Principle
We prove the existence of reaction-diffusion traveling fronts in mean zero space-time periodic shear flows for nonnegative reactions including the classical KPP (Kolmogorov-Petrovsky-Piskunov) nonlinearity. For the KPP nonlinearity, the minimal front speed is characterized by a variational principle involving the principal eigenvalue of a space-time periodic parabolic operator. Analysis of the ...
متن کاملv 2 [ nl in . C D ] 1 2 Ju n 20 01 Front propagation in laminar flows
The problem of front propagation in flowing media is addressed for laminar velocity fields in two dimensions. Three representative cases are discussed: stationary cellular flow, stationary shear flow, and percolating flow. Production terms of Fisher-Kolmogorov-Petrovskii-Piskunov type and of Arrhenius type are considered under the assumption of no feedback of the concentration on the velocity. ...
متن کامل